Last regular class! Katy and Ethan share their code

Thursday, December 3, 2020 | Class #17

OCEAN 215 | Autumn 2020 Ethan Campbell and Katy Christensen

Working with large netCDF files using xarray

📄 note @172 💿 🚖 🔓 🔻

Aviod using NumPy array

Just to remind, numpy array requires large RAM to man

In my project, we easily run our of memory just to creat might be a better choice.

Ethan C Campbell 6 days ago

This is a great point! We'll talk more about this next week, but this is right — Colab can't handle anything clo NumPy array of $3600 \times 7200 \times 130 = 3$ billion points within memory. It'll crash.

CSV files rarely get this large, so usually this isn't a problem.

NetCDF files, however, often get this large (or even larger). The best option is to work within xarray, which is designed to handle large data sets by dividing them into "chunks," performing calculations (often reductions .mean()) separately on each chunk, then giving you the result without ever loading the entire data set at or key to enabling this capability is to specify the chunks argument when loading the netCDF file, as this guide describes: http://xarray.pydata.org/en/stable/dask.html.

```
import xarray as xr
data = xr.open_dataset(filepath, chunks={'lat':6, 'lon':6, 'time':12})
```

In this example, the data is divided into 6 x 6 x 12 chunks. You'll need to specify the actual coordinate name exist in your own netCDF file.

Next, it is essential to perform calculations and slicing without loading the full dataset into memory until you single value or a plot. That means not calling .values until the very end. In the meantime, you can slice an perform calculations normally. These will appear to happen instantly, because xarray is actually just *making* do the slicing or calculating later:

Link: https://piazza.com/class/kdhtk4p4izujg?cid=172

stop following 22 views
nipulate. So google colab could not handle large numpy arrays.
te a 3600x7200x130 np.zeros. So if possible, pandas and xarray

ose to a	<pre># example 1: slice normally # note that temp_slice is much smaller than data, because it's just a slic temp_slice = data['temperature'].sel(time=datetime(2020,10,1),lon=slice(-: 0),lat=slice(40,50)) # example 2: do calculations normally *without* calling .values temp_in_C = temp_slice - 273.15</pre>
s like nce. The le	Then when you're ready to plot the data or need a summary statistic, like an average value, you can ad or .compute() to trigger the NumPy conversion, then send the data to Matplotlib or print a resulting that point, xarray will perform all the <i>planned calculations/slicing</i> on the chunks, individually and safely the result:
es that	<pre># plot the data plt.pcolormesh(temp_slice['lon'].values,temp_slice['lat'].values,temp_slice s)</pre>
u need a nd <i>plans</i> to	<pre># this will perform both the "minus 273.15" calculation from earlier, AND n() calculation, all at once mean_temp = temp_in_c.mean().compute() print(mean_temp)</pre>

Different ways to code in Python

Type of Python code:

Interactive Python (**IPython**) shell

```
>>> print("Hello")
Hello
>>> print(3)
3
```

Mac/Windows application:

Command line (MacOS Terminal or Windows Command Prompt)

Integrated development environment (IDE)

3.6)						
Projects Tools View Help						
🕨 🗭 州 端 🚝 🚝 🂓 📕 陋 💥 🎤 🍨 🔶 🔶 C:\Users\TestUser\Downloads	16740156	56420fb678bb5ba67c3ee3aae4-551407feca17b0f67bb9	f85687f4db8d1b953	678\16740156420fb678bb5ba67c	3ee3aae4-551407	feca 17b0f67bb9f85687f4db8d 1b953678 🛛 🗸 🏲 🛧
stUser\Downloads\16740156420fb678bb5ba67c3ee3aae4-551407feca17b0f67bb9f85687f4db8d1b953678\16740156420fb6.	. Ø×	Outline B × v	ariable explorer			8 ×
interpolation.py 🛛initpy 🖾umd_helper.py 🖾umd_main.py 🖾README.md 🔝	Q,	i = t × # ↔	1 B 4 8			0
	^	Y 👼 interpolation.py	Name	Туре	Size	Value
pylab		Generate data for analysis	array_int8	int8	(2, 3)	Min: -7
umpy import cos, linspace, pi, sin, random		Plot results	needer udet 22		(2 2 2)	Min: 1
scipy.interpolate import spiprep, spiev		0	array_utitoz	411(52	(2, 2, 3)	Max: 7
Generate data for analysis		0	bars	container.BarContainer	20	BarContainer object of matplotlib.conta.
		e e e e e e e e e e e e e e e e e e e	df	DataFrame	(3, 2)	Column names: bools, ints
ascending spiral in 3-space		۰.	filename	str	1	C:\ProgramData\Anaconda3\lib\site-packa
nspace(0, 1.75 * 2 * p1, 100)		> 🤪 imputerNan	list test	list	2	[Dataframe, Numpy array]
.n(t)	_ 1	Y 🖲 Queue	-	int	1	344
us(t)		init		20		
		pop	r	T108164	1	7.611082589334796 Min: 0.4983036638535687
noise			radii	float64	(20,)	Max: 9.856848974942551
andom.normal(scale=0.1, size=x.shape)	_	with open(data_path + output_file_n	region	tuple	2	(slice, slice)
random.normal(scale=0.1, size=y.shape)	- 1	with open(data_path + output_file_n	rgb	float64	(45, 45, 4)	Min: 0.0 Nax: 1.0
andom.normal(scale=0.1, size=z.snape)		with open(data_path + output_file_n	series	Series	(1,)	Series object of pandas.core.series mod
		print_file	test none	NoneType	1	NoneType object of builtins module
'erform calculations		 Example Bitzer class O 	Variable explorer	Help File explorer Find in	n files Breakpo	onts Static code analysis Profiler Online help
ne narameters	- 1	✓	Python console			8 ×
iness = 3.0 # Smoothness parameter	- 1	einit	Console 1/A	Console 2/A 🖸 Custon	n Name/A 🖸	00:34:13 🔳 🍠 🔅
m = 2 # Spline order		prepare_dataset				^
= -1 # Estimate of number of knots needed (-1 = maximal)		✓ ⊛ Serie	: 1s •	 LightSource(270, 45)	
		something		o use a custom milish the pack colors of t	aarng mode, ba shadad s	override the built-in shading
the knot points		Generation	: rgb	= ls.shade(z, cmap=c	m.gist_eart	h, vert_exag=0.1, blend_mode='soft')
ornes, u = sprprep([x, y, z], s=smoornness, k=k_param, nests=-1)		✓ ● foo	: surf	<pre>F = ax.plot_surface(x</pre>	, y, z, rst	ride=1, cstride=1, facecolors=rgb,
uate spline, including interpolated points		_init		1	inewidth-0,	antialiased-False, shade-False)
<pre>ynew, znew = splev(linspace(0, 1, 400), knot_points)</pre>	- 1	@ spam	plt.	.show()		
		with open(file) as f:				
	- 1	0				90°
lot results	- 1	0			13	450
. Rewrite to quaid code small	- 1				1.	
subplot(2, 2, 1)		ě		700	· /	
= pylab.plot(x, y, 'bo-', label='Data with X-Y Cross Section')	- 1	Base		650		6 8
pylab.plot(xnew, ynew, 'r-', label='Fit with X-Y Cross Section')	- 1	Derived		550	180°	2 09
legend()	- 1			450		
xlabel('x')		for r, bar in zip(radii, bars):	1943	400	/	
ylabel('y')	- E I	with np.load(filename) as dem:		36.73		
			-84.41	36.71	22	25* 315*
<pre>subplot(2, 2, 2) = m(lab plot(x, z, 'bo-' label='Data with X-7 (nors Section')</pre>	-		-84	-84.38 36.70		
= pyido.piot(x, 2, 00-, iduei= bala with x-2 cross Section)						270°
legend()			[n [12]-			
xlabel('x')	_ ~		un [44]:			· · · · · · · · · · · · · · · · · · ·
	>		IPython console	History log Internal console	-	
		Permissions:	RW End-of-lin	nes: LF Encoding: UTF-8	Line: 26	Column: 4 Memory: 49 % CPU: 15 %

Jupyter notebook

Internet browser (Chrome, Safari, Firefox, etc.)

File	Edit	View Ir	nsert C	Cell I	Kernel Hel	p					
In [6]:	# 3	upyter Noteb	ook Chro	me Ext	ension						
In [7]:	impo impo	ort numpy as ort pandas a	np s pd								
Im [8]:	pd.:	read_csv("./	titanic.	csv")							
		Passengerid	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Hr. Owen Harris	nale	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	fenale	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	fenale	26.0	0	0	STON/02. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	fenale	35.0	1	0	113803	53.1000
					Allen, Mr.						0.0500

Jupyter vs. Google Colab notebooks

Where is the code run?

Your computer ("the local machine")

How to access them?

- 1. Install Jupyter
- 2. Open command line app (Terminal on Macs,
- 3. Type "jupyter notebook," which will start a local server
- 4. Open internet browser
- 5. Navigate to server address
- 1. Open internet browser
- 2. Navigate to: <u>colab.research.google.com</u>

Jupyter notebooks

Google's servers ("the cloud")

Command Prompt on PCs)

Advantages (+) and disadvantages (-)

• (-) Some setup required

- (+) No internet connection required
- (+) Code runs fast if your computer is fast
- (-) Code runs slow if your computer is slow
- (+) Bonus features, customizability, ability to install any package, etc.
- (+) Free

• (+) No setup required

- (-) Requires internet connection
- (+/-) Code runs decently fast but not blazingly fast
- (-) Less customizability, more difficult package management
- (+/-) Free, as long as Google says it's free
- (+) Google Drive integration; easy to share

Treating yourself to a local Python distribution

ANACONDA_®

https://www.anaconda.com/products/individual

- Installs latest version of Python
- Installs conda and pip (package managers)
- Includes hundreds of common packages (NumPy, SciPy, Matplotlib, Pandas, etc.)
- Includes an IDE application (**Spyder**) and notebook environments

Then, you can write and edit Python code using:

A notebook environment like

An IDE application like

A command-line editor like

(Jupyter, JupyterLab)

ATOM

(Comes with **Anaconda** installation)

(<u>https://www.jetbrains.com/pycharm/</u>)

(https://atom.io)