
SciPy (linear regression,
1-D and 2-D interpolation)

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Thursday, November 19, 2020 | Lesson #14

What we’ll cover in this lesson

1. SciPy: linear regression

2. SciPy: 1-D and 2-D interpolation/regridding

The SciPy (Scientific Python) package

We’ll use this module for linear regression

We’ll use this module for 1-D and 2-D interpolation

Useful constant values (e.g. gravitational constant, Stefan-
Boltzmann constant) and unit conversions (e.g. nautical miles
to miles)

API reference: https://docs.scipy.org/doc/scipy/reference/index.html

Differential equation solvers

Read and write odd file formats (e.g. MATLAB files)

Filtering, Fourier/spectral analysis

Also available: statistical tests (t-test, chi-squared test)

Image credit: scipy-lectures.org

https://docs.scipy.org/doc/scipy/reference/index.html
https://scipy-lectures.org/intro/scipy.html

Loading scipy modules

from scipy import stats
from scipy import interpolate

Loading scipy modules

from scipy import stats, interpolate

Does this noisy data have a trend?

This data has a linear trend and random noise
 + noise

Slope () = 5
Intercept () = –25

y = mx + b

m
b

Random
variations
(“noise”)

“Noise”
can come from
measurement
error or actual
processes of

interest

Regression relates one (or more) predictor variables
to a dependent variable, and it requires assuming a “model”

Here, a linear model seems appropriate
Here, a linear model is inappropriate

(a quadratic model would be better)

Regression relates one (or more) predictor variables
to a dependent variable, and it requires assuming a “model”

Here, a linear model seems appropriate
Here, a linear model is inappropriate

(a quadratic model would be better)

Regression works by minimizing the square of the errors,
so it’s sensitive to outliers

The regression line gets
“pulled” towards outliers

Linear regression in SciPy

slope, intercept, rvalue, pvalue, stderr
 = stats.linregress(x,y)

1-D NumPy arrays of the same length

Correlation coefficient (r)

Two-sided p-value

Standard error

If you don’t need a function output,
you can give it to a “throwaway” underscore

slope, intercept, _, _, stderr
 = stats.linregress(x,y)

These output variables will be ignored

Correlation coefficient (r value) for a linear regression

Important: the value is not typically used!r

Instead, we use , which represents the goodness of fit,
the proportion of variance () in the dependent variable () that can be predicted

from the independent variable () by the linear regression model.

• means 100% of variance is explained by the regression (i.e. the data is a straight line)

• means 50% of variance is explained by the regression

• means 0% of variance is explained by the regression (a very poor fit)

r2

σ2 y
x

r2 = 1.0
r2 = 0.5
r2 = 0.0

p value for a linear regression

The -value represents the probability of obtaining the given regression slope
if the null hypothesis were correct (i.e. the actual slope was zero).

• If , the null hypothesis of no slope can be rejected at the 90% confidence level.

• If , the null hypothesis of no slope can be rejected at the 95% confidence level.

• If , the null hypothesis of no slope can be rejected at the 99% confidence level.

Caution: -values are frequently misused in science.
Small -values can be found even when the chosen model is inappropriate.

p

p < 0.10
p < 0.05
p < 0.01

p
p

Linear regression results

 + noise

Slope () = 5
Intercept () = –25

y = mx + b

m
b

What if your x-values are datetime objects?

linregress() can’t handle
an array of datetime objects
as x-values

This converts datetime objects
to numbers representing “days since
0001-01-01 plus one”, which
linregress() can handle

What we’ll cover in this lesson

1. SciPy: linear regression

2. SciPy: 1-D and 2-D interpolation/regridding

What is interpolation?

Definition: Interpolation allows you to estimate unknown
values of a variable based on known values of the variable.

Values of a variable can be unknown because…

• They weren’t measured frequently enough in time or space.

• They weren’t measured at the right times or locations or on the right grid.

• The data are missing, perhaps because an instrument temporarily
stopped measuring.

Example: climatological high temperatures in Seattle

Example: climatological high temperatures in Seattle

This is
linear

interpolation!

What if we wanted the climatological temperature on November 1?

We’d estimate it
using the

straight line
between the
Oct. 15 and

Nov. 15 points!

Interpolated (“regridded”) from 15th of each month to 1st of each month…

Interpolation and regridding can come with a loss in accuracy

1-D interpolation in SciPy is a two-step process

interp_func = interpolate.interp1d(x,y,
 kind='linear',
 bounds_error=False,
 fill_value=np.NaN)

y_new = interp_func(x_new)

API reference: SciPy interp1d()

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

1-D interpolation in SciPy is a two-step process

interp_func = interpolate.interp1d(x,y,
 kind='linear',
 bounds_error=False,
 fill_value=np.NaN)

y_new = interp_func(x_new)

Original x- and y-values (1-D arrays)This is a function, but you can choose its name

Interpolated y-values (1-D array) Set of x-values to interpolate to (1-D array)

Other options: 'nearest',
'quadratic' , 'cubic ',etc.

If points in x_new are outside x,
set to False to avoid an error

Other option: 'extrapolate'

Interpolating to/from x-values that are datetime arrays

import matplotlib.dates as mdates

interp_func =
interpolate.interp1d(mdates.date2num(x),y)

y_new = interp_func(mdates.date2num(x_new))

Converts datetime objects into numbers of days

Example scenario:

1D nearest-
neighbour

Linear Cubic

2D nearest-
neighbour Bilinear Bicubic

Types of interpolation

Image credit: C.M.G. Lee

1-D:

2-D:

https://en.wikipedia.org/wiki/Multivariate_interpolation#/media/File:Comparison_of_1D_and_2D_interpolation.svg

2-D interpolation (a.k.a. 2-D regridding)

For more information on regridding, see Climate Data Guide's "Regridding Overview"

ISPRS Int. J. Geo-Inf. 2018, 7, 313 10 of 20

5. Methods on Arrays

5.1. Regridding and Change of Support

A common operation on array data is regridding: deriving values for grid cells that are not aligned
perfectly with the original grid cells. Regridding is particularly needed when data from different
sources are integrated [31–35] or models acting at different grid configurations are combined, as in the
CSDMS [4] or OpenMI [36] frameworks.

A utility that carries out regridding is gdalwarp, which is available as a binary executable and
an API call in the GDAL library. This utility has 12 methods for obtaining new grid cell values. Several
of these interpolate (nearest neighbour, bilinear, cubic, cubic spline, Lanczos windowed sinc [37]),
others aggregate points covered by the new cell (Figure 3, lower right) using as aggregation function
the average, mode, max, min, median, first quartile, or third quartile. None of the methods provides
the aggregation of intersecting grid cell sections, such as depicted in the lower-left of Figure 3.

Figure 3. Regridding: original values are available for the grid indicated by grey lines, new values are
required for the black lined grid (e.g., the red cell), or vice versa (e.g., the green cell). New cell values
can be calculated from the intersecting grid areas (lower left), intersecting grid cell centre points (lower
right), or using interpolation (e.g., from black cells or cell center points to the green cell).

Which regridding method is most appropriate primarily depends on the measurement scale [38]
of the regridded variable: if it is on a nominal scale (such as land use type), only nearest neighbour
and mode are meaningful. If the origin grid cells are considered as points, and are much larger than
the destination grid cells (Figure 3: regrid from the black to the grey cells) then interpolation methods
make sense. If the origin grid cells are much smaller and aggregate values over the target cells (black
cell in Figure 3) are needed, then aggregation methods make more sense. In any case, geostatistical
methods for regridding are preferred because they adopt and parametrise an explicit model for the
spatial variation of the variable being regridded [39,40]; they also allow for addressing grid points

Image credit: Lu et al. (2018)

You have:
An irregular grid
(lat and lon
or other coordinates are usually
2-D arrays)

You want:
A regular grid
(lat and lon
can be represented
as 1-D coordinates)

longitudes

l
a
t
i
t
u
d
e
s

plt.pcolormesh()
plt.contourf()

xarray’s .sel()

plt.pcolormesh()
plt.contourf()

xarray’s .sel()

https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/regridding-overview
https://www.mdpi.com/2220-9964/7/8/313

2-D interpolation in SciPy is a three-step process

x_coord = np.linspace(start,end,num_x_points)
y_coord = np.linspace(start,end,num_y_points)

x_grid,y_grid = np.meshgrid(x_coord,y_coord)

z_gridded = interpolate.griddata((x_flat,y_flat),
 z_flat,
 (x_grid,y_grid),
 method='linear')
API references: NumPy meshgrid() and SciPy griddata()

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

2-D interpolation in SciPy is a three-step process

x_coord = np.linspace(start,end,num_x_points)
y_coord = np.linspace(start,end,num_y_points)

x_grid,y_grid = np.meshgrid(x_coord,y_coord)

z_gridded = interpolate.griddata((x_flat,y_flat),
 z_flat,
 (x_grid,y_grid),
 method='linear')

Regularly-spaced 1-D coordinate arrays

Steps #1 and #2
are optional if you

already have a
new x- and y-grid

These values determine your new grid domain

“Meshed” (stacked) 2-D versions of the 1-D coordinate arrays — compatible with plt.pcolormesh(), plt.contourf()

2-D array of the z-parameter values, interpolated to the new x- and y-coordinates — compatible with plt.pcolormesh(), plt.contourf()

Other interpolation methods:
'nearest','cubic '

1-D arrays of the original irregular x- and y-locations and z-parameter data
— incompatible with plt.pcolormesh(), plt.contourf()
Note: if the original arrays are 2-D, you have to fl atten them fi rst, e.g.:
 z_flat = z_original.flatten()

