Watch by Thursday, November 19,2020 | Lesson #14

Sc 1Py (linear regression,
1-D and 2-D interpolation)

OCEAN215 | Autumn 2020
Ethan Campbell and Katy Christensen

What we'll cover in this lesson

1. Sc1Py:linear regression

2. Sc1Py:1-D and 2-D interpolation/regridding

The SciPy (Scientific Python) package

scipy.cluster Vector quantization / Kmeans Useful constant values (e.g. gravitational constant, Stefan-
scipy.constants Physical and mathematical constants €——— Boltzmann constant) and unit conversions (e.g. nautical miles
scipy.fftpack Fourier transform to miles)

scipy.integrate Integration routines 4—— Differential equation solvers

scipy.interpolate Interpolation ¢ \\¢ll use this module for 1-D and 2-D interpolation
scipy.1io Data input and output ~ €——————————-—Read and write odd file formats (e.g. MATLAB files)
scipy.linalg Linear algebra routines

scipy.ndimage n-dimensional image package

scipy.odr Orthogonal distance regression

scipy.optimize Optimization

scipy.signal Signal processing 4 Filtering, Fourier/spectral analysis

SCipy.sparse Sparse matrices

scipy.spatial Spatial data structures and algorithms

scipy.special Any special mathematical functions

scipy.stats Statistics ————_ We'll use this module for linear regression

Also available: statistical tests (t-test, chi-squared test)

API reference: https:/docs.scipy.org/doc/scipy/reference/index.ntml Image credit: scipy-lectures.org

https://docs.scipy.org/doc/scipy/reference/index.html
https://scipy-lectures.org/intro/scipy.html

Loading sc1py modules

SClpy stats
SClpy 1nterpolate

Loading sc1py modules

SC1lpy stats, 1nterpolate

80 -

60 -

40 -

20 -

_20 -

_40 -

_60 -

_80 -

Does this noisy data have a trend?

This data has a linear trend and random noise

Random
variations
(“noise™)

“Noise”
can come from
measurement
error or actual

processes of

interest

Regression relates one (or more) predictor variables
to a dependent variable, and it requires assuming a "“model

_ | Here, a linear model is inappropriate
Here, a linear model seems appropriate _
(a quadratic model would be better)

80 A

60 -

40 -

ik -

v

20 A

_20 -

_40 -

i

_60 -

_80 -
_50 -

0 > 4 6 8 10 0 2 4 6 8 10

Regression relates one (or more) predictor variables
to a dependent variable, and it requires assuming a "“model”

_ | Here, a linear model is inappropriate
Here, a linear model seems appropriate _
(a quadratic model would be better)

80 A

60 -

40 A

& 150 - ’
[100 - &

20 -

_20 -

_40 -

_60 -

_80 -
_50 -

Regression works by minimizing the square of the errors,
So it's sensitive to outliers

100 77— Regression

- == Regression without outliers
50 -

_50 -

—100 -

—150 - The regression line gets

“pulled” towards outliers

—200 -

Linear regression in SciPy

Correlation coefficient (r) Standard error

\ Two-sided p-value \

slope, 1ntercept, rvalue, pvalue, stderr
= stats.linregress(x,V)

\|

1-D NumPy arrays of the same length

If you don't need a function output,
you can give it to a "throwaway” underscore

These output variables will be ignored

/|

slope, 1ntercept, , , stderr

= stats.linregress(x,V)

Correlation coefficient (r value) for a linear regression

Important: the r value is not typically used!

Instead, we use 7, which represents the goodness of fit,
the proportion of variance (o) in the dependent variable (y) that can be predicted
from the independent variable (x) by the linear regression model.

e 7> = 1.0 means100% of variance is explained by the regression (i.e. the data is a straight line)

e > = (0.5 means50% of variance is explained by the regression

e 7> = (.0 means 0% of variance is explained by the regression (a very poor fit)

p value for a linear regression

The p-value represents the probability of obtaining the given regression slope
if the null hypothesis were correct (i.e. the actual slope was zero).

o Ifp < 0.10,the null hypothesis of no slope can be rejected at the 90% confidence level.
o |fp < 0.05,the null hypothesis of no slope can be rejected at the 95% confidence level.
o |fp < 0.01,the nullhypothesis of no slope can be rejected at the 99% confidence level.

Caution: p-values are frequently misused in science.
Small p-values can be found even when the chosen model is inappropriate.

Linear regression results

1 slope, intercept, rvalue, pvalue, stderr = stats.linregress(x,y) y = mx + b+ noise
2

3 print('The slope is', round(slope,?2))
4 print('The y-intercept is', round(intercept,?2)) Slope (1771) =5

5 print('The r-value is', round(rvalue,?2)) Intercept (b) = -25
6 print('The p-value is',pvalue)

7 print('The standard error is',round(stderr,2))

80 -

The slope is 5.77 60
The y-intercept 1s -28.7 40 -
The r-value is 0.53

The p-value is 1.779535447617004e-08 20 M
The standard error 1s 0.94 0 -
SRl
60 -

_80 -

What if your x-values are datet ime objects?

1 import matplotlib.dates as mdates

2

3t = np.array([datetime(2020,1,1), < linregress () canthandle

4 datetime(2020,2,1), an array of datet 1me objects

5 datetime(2020,3,1)1) as x-values @

o

7 t as _numbers = mdates.date2num(t) < Thisconvertsdatetime objects

g to numbers representing “days since

0 prlnt(t as numbers) 0001-01-01 plus one”, which

- linregress () can handle/\

[737425. 737456. 737485.] N

\\\ - 4 /

What we'll cover in this lesson

1. Sc1Py:linear regression

2. Sc1Py:1-D and 2-D interpolation/regridding

What is interpolation?

Definition: Interpolation allows you to estimate unknown
values of a variable based on known values of the variable.

Values of a variable can be unknown because...

e [heywerent measured frequently enough in time or space.
e [heywerent measured at the right times or locations or on the right grid.

e [he data are missing, perhaps because an instrument temporarily
stopped measuring.

Temperature (°F)

Example: climatological high temperatures in Seattle

=Saralgene;

e - .

an Mar May Jul Sep Nov

Example: climatological high temperatures in Seattle

70 - Thisis
linear

T 0 interpolation!
2
S 60 -
O
g
£ 55
1S

50 -

45

Jaln Mlar Mldy JlIJ| Sép Ncl)v

Month

What if we wanted the climatological temperature on November 1?

We'd estimate it

70 - using the
straight line
- > between the
£ 60 Oct.15 and
D Nov. 15 points!
g 55

U1
-
I

S
U1

Jan Mar May Jul Sep Nov
Month

Interpolated (“regridded”) from 16th of each month to 1st of each month...

Climatological high temperatures in Seattle

~ = QOriginal

~
~ - = |nterpolated

~
o
|

o)
U1
|

@)
o
|

Ul
Ul
|

Temperature (°F)

U1
o
|

AN
Ul
|

Jan Mar May Jul Sep Nov Jan
Month

Interpolation and regridding can come with a loss in accuracy

Climatological high temperatures in Seattle

= QOriginal

70 - & — = Interpolated
_. 65
3
Cl)
5 60 -
e
o
c 55
12

50 -

45

&

Jan Mar May Jul Sep Nov Jan
Month

1-D interpolation in SciPy is a two-step process

interp func = interpolate.interpld(x,yv,
kind="'linear',
bounds error=False,
fill value=np.NaN)

y new = 1interp func(x new)

APl reference: SciPy interpld()

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

1-D interpolation in SciPy is a two-step process

This is a function, but you can choose its name Original x- and y-values (1-D arrays)
interp func = interpolate.interpld(x,yv,

Otheroptions: ' nearest ', / kind: | linear | [
'quadratic’', 'cubic ', etc.
_— N ______—Dbounds_error=ralse,
pointsin X new are outside x, —_
setto False toavoid an error . —
HoFalsetoavld ~»ti1ll value=np.NaN)

Other option: ' extrapolate’

y new = 1interp func(x new)

\ /

Interpolated y-values (1-D array) Set of x-values to interpolate to (1-D array)

Interpolating to/from x-values that are datet ime arrays

Example Scenario. Climatological high temperatures in Seattle

matplotlib.dates mdates

Jan Mar May Jul Sep Nov Jan
Month

interp func =
interpolate.1interpld(mdates.date2num(x),v)

y new = interp func(mdates.date2num(x new))

/

Converts dat et 1me objects into numbers of days

1-D:

Types of interpolation

1]

1D nearest-

neighbour

\-

2D nearest-

neighbour

'l

Linear

\ »

Bilinear

1]

Cubic

Bicubic

Y

Image credit: CM.G. L ee

https://en.wikipedia.org/wiki/Multivariate_interpolation#/media/File:Comparison_of_1D_and_2D_interpolation.svg

2-D interpolation (a.k.a. 2-D regridding)

You have:
Anirregular grid
(Lat and Llon
oratherconranates A1 USUAINY
2-D arrays)

plt.pecolormesh ()
plt.contourf ()

xXarray’s . sel ()

+<—— longitudes —

—— You want:
I A regular grid
y (Latand lon
Q)
M can be represented
ct
3 as 1-D coordinates)
0
plt.pcolormesh ()
plt.contourf ()

xarray’s .sel ()

For more information on regridding, see Climate Data Guide's "Regridding Overview"

Image credit: Lu et al. (2018)

https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/regridding-overview
https://www.mdpi.com/2220-9964/7/8/313

2-D interpolation in SciPy is a three-step process

np.linspace(start,end,num x points)

y coord = np.linspace(start,end,num y points)
, VY grid = np.meshgrid (, Y coord)
z gridded = interpolate.griddata((,y flat),
z flat,
(,Y_grid),

method="linear ')
APl references: NumPy meshgrid() and SciPy griddatal)

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

2-D interpolation in SciPy is a three-step process

Regularly-spaced 1-D coordinate arrays

\ These values determine your new grid domain
|.|

np.linspace(start,end,num x points)

y coord = np.linspace(start,end,num y points) i Steps #1and #2
: are optional if you
“Meshed” (stacked) 2-D versions of the 1-D coordinate arrays — compatible with p1t .pcolormesh(),plt.contourf () i already have a
: . new x- and y-grid
~\\\‘ YV grid = np.meshgraid/(, Y coord) :

]
il

2-D array of the z-parameter values, interpolated to the new x- and y-coordinates — compatible with plt.pcolormesh (),plt.contourf ()

*z_gridded = interpolate.griddata((,y flat),

1-D arrays of the original irregular x- and y-locations and z-parameter data / (v gr ») ,

method='1linear ')

Note: if the original arrays are 2-D, you have to flatten them first, e.g.:

z flat = z original.flatten() Other interpolation methods:

'nearest’', 'cubic

