SciPy (linear regression, 1-D and 2-D interpolation)

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

What we'll cover in this lesson

1. SciPy: linear regression

2. SciPy:1-D and 2-D interpolation/regridding

The SciPy (Scientific Python) package

scipy.cluster	Vector quantization / Kmeans	Useful constant values (e.g. gravitational constant, Stefan-
scipy.constants	Physical and mathematical constants	Boltzmann constant) and unit conversions (e.g. nautical miles
scipy.fftpack	Fourier transform	to miles)
scipy.integrate	Integration routines	Differential equation solvers
scipy.interpolate	Interpolation	e'll use this module for 1-D and 2-D interpolation
scipy.io	Data input and output	Read and write odd file formats (e.g. MATLAB files)
scipy.linalg	Linear algebra routines	
scipy. ndimage	n-dimensional image package	
scipy.odr	Orthogonal distance regression	
scipy.optimize	Optimization	
scipy.signal	Signal processing	Filtering, Fourier/spectral analysis
scipy.sparse	Sparse matrices	
scipy.spatial	Spatial data structures and algorithms	
scipy.special	Any special mathematical functions	
scipy.stats	Statistics	I use this module for linear regression

API reference: https://docs.scipy.org/doc/scipy/reference/index.html
Image credit: scipy-lectures.org

Loading scipy modules

from scipy import stats
from scipy import interpolate

Loading scipy modules

from scipy import stats, interpolate

Does this noisy data have a trend?

This data has a linear trend and random noise

Regression relates one (or more) predictor variables

 to a dependent variable, and it requires assuming a "model"Here, a linear model seems appropriate

Here, a linear model is inappropriate (a quadratic model would be better)

Regression relates one (or more) predictor variables

 to a dependent variable, and it requires assuming a "model"Here, a linear model seems appropriate

Here, a linear model is inappropriate (a quadratic model would be better)

Regression works by minimizing the square of the errors, so it's sensitive to outliers

The regression line gets "pulled" towards outliers

Linear regression in SciPy

If you don't need a function output, you can give it to a "throwaway" underscore

These output variables will be ignored

slope, intercept, _, _, stderr
$=$ stats.linregress (x, y)

Correlation coefficient (r value) for a linear regression

Important: the r value is not typically used!

Instead, we use r^{2}, which represents the goodness of fit, the proportion of variance $\left(\sigma^{2}\right)$ in the dependent variable (y) that can be predicted from the independent variable (x) by the linear regression model.

- $r^{2}=1.0$ means 100% of variance is explained by the regression (i.e. the data is a straight line)
- $r^{2}=0.5$ means 50% of variance is explained by the regression
- $r^{2}=0.0$ means 0% of variance is explained by the regression (a very poor fit)

p value for a linear regression

The p-value represents the probability of obtaining the given regression slope if the null hypothesis were correct (i.e. the actual slope was zero).

- If $p<0.10$, the null hypothesis of no slope can be rejected at the 90% confidence level.
- If $p<0.05$, the null hypothesis of no slope can be rejected at the 95% confidence level.
- If $p<0.01$, the null hypothesis of no slope can be rejected at the 99% confidence level.

Caution: p-values are frequently misused in science.
Small p-values can be found even when the chosen model is inappropriate.

Linear regression results

1 slope, intercept, rvalue, pvalue, stderr = stats.linregress(x,y)
2
3 print('The slope is',round(slope,2))
4 print('The y-intercept is',round(intercept,2))
5 print('The r-value is',round(rvalue,2))
6 print('The p-value is',pvalue)

$$
\begin{aligned}
& y=m x+b+\text { noise } \\
& \text { Slope }(m)=5 \\
& \text { Intercept }(b)=-25
\end{aligned}
$$

7 print('The standard error is',round(stderr,2))
The slope is 5.77
The y-intercept is -28.7
The r-value is 0.53
The p-value is $1.779535447617004 \mathrm{e}-08$
The standard error is 0.94

What if your x-values are datetime objects?

```
1 import matplotlib.dates as mdates
2
3 t = np.array([datetime(2020,1,1),\longleftarrow linregress() can'thandle
                                    datetime(2020,2,1), an array of datetime objects
5 datetime(2020,3,1)])
                                    as x-values
t_as_numbers = mdates.date2num(t)
8
9 print(t_as_numbers)
0001-01-01 plus one", which
linregress() can handle
```

[737425. 737456. 737485.]

What we'll cover in this lesson

1. SciPy: linear regression
2. SciPy: 1-D and 2-D interpolation/regridding

What is interpolation?

Definition: Interpolation allows you to estimate unknown values of a variable based on known values of the variable.

Values of a variable can be unknown because...

- They weren't measured frequently enough in time or space.
- They weren't measured at the right times or locations or on the right grid.
- The data are missing, perhaps because an instrument temporarily stopped measuring.

Example: climatological high temperatures in Seattle

Example: climatological high temperatures in Seattle

What if we wanted the climatological temperature on November 1?

We'd estimate it using the straight line between the Oct. 15 and Nov. 15 points!

Interpolated ("regridded") from 15th of each month to 1st of each month...

Interpolation and regridding can come with a loss in accuracy

1-D interpolation in SciPy is a two-step process

interp_func $=$ interpolate.interpld(x,y, kind='linear', bounds_error=False, fill_value=np.NaN)
y_new = interp_func(x_new)

1-D interpolation in SciPy is a two-step process

This is a function, but you can choose its name
Original x - and y-values (1-D arrays)

interp_func $=$ interpolate.interpld(x, y,
Other options: 'nearest'
'quadratic', 'cubic ', etc.
If points in x _new are outside x, \longrightarrow bounds er_mor=Ea_se.

Other option: ' extrapolate
y_new = interp_func(x_new)

Interpolating to/from x-values that are datet ime arrays

import matplotlib.dates as mdates interp_func =
 interpolate.interp1d(mdates.date2num(x),y)
y_new $=$ interp_func(mdates.date2num(x_new))

Types of interpolation

2-D interpolation (a.k.a. 2-D regridding)

You have:

An irregular grid
(l at and lon
ooctatercosdinetes are usually
2-D arrays)

(lat and lon can be represented as 1-D coordinates)

```
plt.pcolormesh()
    plt.contourf()
        xarray's.sel()
```

For more information on regridding, see Climate Data Guide's "Regridding Overview" Image credit: Lu et al. (2018)

2-D interpolation in SciPy is a three-step process

```
x_coord = np.linspace(start,end,num_x_points)
y_coord = np.linspace(start,end,num_y_points)
```

x_grid,y_grid = np.meshgrid(x_coord,y_coord)
z_gridded = interpolate.griddata((x_flat,y_flat),
z_flat,
(x_grid,y_grid),
method='linear')

API references: NumPy meshgrid() and SciPy griddata()

2-D interpolation in SciPy is a three-step process

Regularly-spaced 1-D coordinate arrays

"Meshed" (stacked) 2-D versions of the 1-D coordinate arrays - compatible with plt.pcolormesh (), plt.contourf ()

Steps \#1 and \#2 are optional if you already have a new x - and y-grid

2-D array of the z-parameter values, interpolated to the new x - and y-coordinates - compatible with plt.pcolormesh (), plt.contourf ()

$$
\text { z_gridded = interpolate.griddata(}\left(x _f l a t, Y _f l a t\right),
$$

D arrays of the original irregular x - and y-locations and z-parameter data

