
Functions, organization, external
packages, and string formatting

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Tuesday, December 1, 2020 | Lesson #16

What we’ll cover in this lesson

1. Creating functions

2. Organizing your code and installing external packages

3. String formatting

What we’ll cover in this lesson

1. Creating functions

2. Organizing your code and installing external packages

3. String formatting

What we’ll cover in this lesson

1. Creating functions

2. Organizing your code and installing external packages

3. String formatting

Code organization

You want your code to be easily read and debugged.
It is often best to “tell a story” with your code…

Put functions early in the code in the order that you use them later.

Use comments to denote what is happening, but not too many!

Each cell in Colab should have a specific task.

Put the code in a logical order with intuitive blocks.

Set up your system and install any needed packages

Set up your system and install any needed packages

Import your packages/modules (including any custom modules)

Mount your drive

Set up your system and install any needed packages

Import your packages/modules (including any custom modules)

Mount your drive

Create different functions for frequently used code

It usually helps to create functions that do a specific tasks
(e.g. read, analyze, plot)

Set up your system and install any needed packages

Import your packages/modules (including any custom modules)

Mount your drive

Create different functions for frequently used code

It usually helps to create functions that do a specific tasks
(e.g. read, analyze, plot)

Analyze the data

Read the data

Set up your system and install any needed packages

Import your packages/modules (including any custom modules)

Mount your drive

Read the data

Analyze the data

Plot the data
One cell per plot helps with organization

Create different functions for frequently used code

It usually helps to create functions that do a specific tasks
(e.g. read, analyze, plot)

Consistent code style helps keep everything organized

https://www.python.org/
dev/peps/pep-0008/

#code-lay-out

https://www.python.org/dev/peps/pep-0008/#code-lay-out
https://www.python.org/dev/peps/pep-0008/#code-lay-out
https://www.python.org/dev/peps/pep-0008/#code-lay-out

Consistent code style helps keep everything organized

Consistent code style helps keep everything organized

Consistent code style helps keep everything organized

Packages

A package is a directory of Python modules.
We have already seen a number of packages!

To use the modules in a package you have to import it.

import matplotlib.pyplot as plt

Useful packages for Oceanography

1. numpy

2. scipy

3. xarray

4. Pandas

5. datetime

6. matplotlib.pyplot

1. netCDF4

2. Cartopy

3. cmocean

4. Gibbs Seawater
(gsw)

Already in Colab Not in Colab

How to find what packages Colab already has

!pip list

How to import external packages to Colab

!pip install <package name>

To figure out the name to import the package, you can check
the documentation! (Example: https://matplotlib.org/cmocean/)

https://matplotlib.org/cmocean/

GSW and cmocean

!pip install gsw

!pip install cmocean

GSW and cmocean

!pip install gsw

!pip install cmocean

How to find what modules are in a package

dir(<package name>)

https://teos-10.github.io/GSW-Python/gsw_flat.html

More information on each functions can
be found at the documentation:

Or you can get information on a specific
function using ?

gsw.sigma0?

How to find what modules are in a package

What we’ll cover in this lesson

1. Creating functions

2. Organizing your code and installing external packages

3. String formatting

Formatting strings makes hard-coding unnecessary

Formatting strings to fit your needs

<string>.format()

Formatting strings to fit your needs

Formatting strings to fit your needs

Formatting strings to fit your needs

Formatting strings to fit your needs

You can round the output of a float

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string

This is the
placeholder
- blank: the format arguments

are in order
- integer: the format argument

position is known
- name: the format argument

has keyword arguments

This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string

This is the
placeholder
- blank: the format arguments

are in order
- integer: the format argument

position is known
- name: the format argument

has keyword arguments

This is the
number of
characters to
output

This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string

This is the
placeholder
- blank: the format arguments

are in order
- integer: the format argument

position is known
- name: the format argument

has keyword arguments

This is the
number of
characters to
output This is the

number of
decimal places
to round to
- Only for floats

This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string

This is the
placeholder
- blank: the format arguments

are in order
- integer: the format argument

position is known
- name: the format argument

has keyword arguments

This is the type of
object

- s: the input is a string
- d: the input is an integer
- f: the input is a float
- e: the input is an exponential

This is the
number of
characters to
output This is the

number of
decimal places
to round to
- Only for floats

This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string

This is the
placeholder
- blank: the format arguments

are in order
- integer: the format argument

position is known
- name: the format argument

has keyword arguments

This is the type of
object

- s: the input is a string
- d: the input is an integer
- f: the input is a float
- e: the input is an exponential

This is the
number of
characters to
output This is the

number of
decimal places
to round to
- Only for floats

This is the function These are the inputs

You can customize the outputs

‘{0:6.3f}’.format(3.141592653589)
This is the string This is the function These are the inputs

Additional
formatting can
go here.

> Right-aligned

< Left-aligned

^ Center-aligned

0 Zero-padded

space A space is in front of positive numbers, a negative sign is in front of negative numbers

+ A positive sign is in front of positive numbers, a negative sign is in front of negative numbers

These are only
relevant to

number inputs

String formatting is particularly helpful in for loops

String formatting is particularly helpful in for loops

String formatting can also be helpful in functions

Adding math symbols to strings on figures

Adding math symbols to strings on figures

‘π’

‘Θ’

Adding math symbols to figures

$ $

Insert character text hereSuper- and sub- scripts

https://matplotlib.org/3.1.1/tutorials/text/mathtext.html
For more special symbols, see the documentation

https://matplotlib.org/3.1.1/tutorials/text/mathtext.html

