
Lists, object types, and logical operations

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Tuesday, October 13, 2020 | Lesson #3

What we’ll cover in this lesson

1. What is a list?

2. List functions

3. Object types

4. Logical Operations

What we’ll cover in this lesson

1. What is a list?

2. List functions

3. Object types

4. Logical Operations

Lists are objects with length

Remember: strings have a length that includes each character

Lists also have length! The length of
a list includes all of the items
within…

Remember: strings have a length that includes each character

Lists also have length! The length of
a list includes all of the items
within…

A list can have numbers.

A list can have any object type as an item

Remember: strings have a length that includes each character

Lists also have length! The length of
a list includes all of the items
within…

A list can have numbers.

A list can have any object type as an item

To put objects into a list, use square
brackets []

Remember: strings have a length that includes each character

Lists also have length! The length of
a list includes all of the items
within…

A list can have numbers.

A list can have Booleans.

A list can have any object type as an item

Remember: strings have a length that includes each character

Lists also have length! The length of
a list includes all of the items
within…

A list can have numbers.

A list can have strings.

A list can have Booleans.

A list can have any object type as an item

A list can have any object type as an item
A list can have numbers. A list can have strings.A list can have Booleans.

A list can have lists.

Another way to create this list
would be to use the variable names
for each of the previously created

lists!

A list can have any object type as an item

A list can also be empty.

A list can have a mix of object types.

List indexing and slicing

How python counts list items (indexing):
P y t h o n i s f u n !

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Single items Slices

book_info[1] book_info[0:2]

‘Miguel de Cervantes’ [‘Don Quixote’, ‘Miguel de Cervantes’]

String indexing

Remember:

0 1 2 3 4

Indexing and slicing is the
same for lists and strings

List indexing and slicing

How python counts list items (indexing):
P y t h o n i s f u n !

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Multi-level indexing

book_info[1] ‘Miguel de Cervantes’

book_info[1][0:6] ‘Miguel’

String indexing

Remember:

0 1 2 3 4

List items that are objects with length can be sliced

List indexing and slicing

How python counts list items (indexing):
P y t h o n i s f u n !

0 1 2 3 4 5 6 7 8 9 10 11 12 13

String indexing

Remember:

0 1 2 3 4

-5 -4 -3 -2 -1

Negative indexing

book_info[-1] book_info[4] True

book_info[-3] book_info[2] [1605, 1615]

List indexing and slicing

Items in a list can be replaced using their index values

0 1 2 3 4

-5 -4 -3 -2 -1

This could also be written as
book_info [4] = False

List indexing and slicing

More Slicing

book_info[:3] book_info[0:3] [‘Don Quixote’, ‘Miguel de Cervantes’, [1605,1615]]

book_info[2:] book_info[2:5] [[1605, 1615], 863, True]

0 1 2 3 4

-5 -4 -3 -2 -1

If you are starting at the beginning or stopping at the end of a list, you
can omit the index value in your slice

List indexing and slicing

Extended Slicing

book_info[0:5:1] book_info[::1] [‘Don Quixote’, ‘Miguel de Cervantes’, [1605,1615],863, True]

book_info[0:5:2] book_info[::2] [‘Don Quixote’, [1605,1615], True]

book_info[0:5:3] book_info[::3] [‘Don Quixote’, 863]

book_info[0:5:-1] book_info[::-1] [True, 863, [1605,1615], ‘Miguel de Cervantes’, ‘Don Quixote’]

0 1 2 3 4

-5 -4 -3 -2 -1

You can slice using a step argument to get every
nth (1st, 2nd, 3rd, 4th, etc.) items in a list

Objects like lists…

Tuple

A tuple is the same as a list except they are immutable - we cannot change the items inside once they
are assigned. Create a tuple using parentheses () around the objects you want inside.

Range

Objects like lists…

Optional

Required

A range object creates a sequence of numbers. The
sequence starts from zero and increases by ones
by default. The object created is a range object, but
specific numbers in the sequence can be called
using the same indexing as lists.

range(start, stop, step)

What we’ll cover in this lesson

1. What is a list?

2. List functions

3. Object types

4. Logical Operations

Our sample list

Here we have a sample list (seawater) containing the 6 ions in
seawater with the highest concentrations (Chloride, Sodium,
Magnesium, Sulphate, Calcium, Potassium). Each item in the
list has the ion name, the chemical symbol, and the percent
of total ions (%). Below the sample list, lists containing the
next 4 highest concentration ions are shown as well.

We will be using all of these lists to showcase common list
functions.

List functions

Adding items to a list:

List functions

append()

Adds a single item to the end of the list

Adding items to a list:

Adds multiple items to the end of the list

List functions

extend()

Adding items to a list:

Notice that the
input has to be a

list!

List functions
append()

extend()
Double brackets here

mean that the appended
list of concentrations
was added as a single

item. This is not what we
want!

List functions

+

Concatenates the items from two lists

Adding items to a list:

List functions

+

Concatenates the items from two lists

Adding items to a list:

insert()

Adds a single item to a given index in the list

List functions

Adding items to a list:

List functions

Removing items from a list:

List functions

Removing items from a list:

remove()

Deletes the first occurrence of a given item

Notice that the input must be in
the list or this does not work

List functions

Removing items from a list:

del
Deletes the items in a given index.

Can also delete the whole list (and any other objects)!

List functions

Removing items from a list:

pop()

Removes and outputs an indexed item (default= -1)

List functions

Reversing a list:

reverse()

Reverses the order that a list is in

List functions

Setting a variable equal to a list and then changing the list,
changes the variable too.

List functions

Setting a variable equal to a list and then changing the list,
changes the variable too. Avoid this by using copy()

List functions

When a list has only strings in it, you can combine the different string items into a single string object.

join() split()

List functions

When a list has only strings in it, you can combine the different string items into a single string object.

join() split()

?

? ?

List functions
append Put single item on the end - list.append(object)

extend Put multiple items on the end Items must be put into a list list.extend([object])

+ Concatenate 2 lists Be cautious of concatenating
lists within lists new_list = list1 + list2

insert Put an item in at a specific index Specify the index value first list.insert(index, object)

remove Delete the first occurrence of an item Object must be in the list list.remove(object)

del Delete a slice (using indexing) Can remove whole objects too! del list

pop Remove and output and item at a
specific index (default: -1)

Keep track of how your index
values change list.pop(index)

reverse Reverse the order of the list - list.reverse()

copy Create a separate copy of a list This helps to keep a version of
the list that is “original” new_list = list.copy()

join Join the strings in a list into a single
string

Can only be used if the list has
just strings in it ‘ ‘.join(list)

What we’ll cover in this lesson

1. What is a list?

2. List functions

3. Object types

4. Logical Operations

Finding the object type

Object types so far:

To find out what type
of object a variable is,
use the type()
function.

Integer

Float

Complex

Boolean

String

List

Numbers

Changing object type

Integer

Float

Complex

Boolean

String

To change an object into an integer, use the function: int()

Cases that this does not work:
• If your variable is a complex object

• If your variable is a list

• If your variable is a non-numeric string

• If your variable is a numeric string with a
decimal

Notice that changing a float to
an integer drops the decimal

List

Object types so far:

Changing object type

Integer

Float

Complex

Boolean

String

To change an object into a float, use the function: float()

List

Object types so far:

Cases that this does not work:
• If your variable is a complex object

• If your variable is a list

• If your variable is a non-numeric string

Changing object type

Integer

Float

Complex

Boolean

String

To change an object into a complex, use the function: complex()

List

Object types so far:

Cases that this does not work:
• If your variable is a list

• If your variable is a non-numeric string

Changing object type

Integer

Float

Complex

Boolean

String

To change an object into a boolean, use the function: bool()

Cases that this does not work:
•

Only objects that are empty
or zero will produce a False.
All other objects are True.

List

Object types so far:

Changing object type

Integer

Float

Complex

Boolean

String

To change an object into a string, use the function: str()

Cases that this does not work:
•

List

Object types so far:

Changing object type

Integer

Float

Complex

Boolean

String

To change any object into a list, use square brackets []

Cases that this does not work:
•

List

Object types so far:

To change iterable objects into a string, use list()
Basic definition: an
object with a length

(e.g. strings, lists)

What we’ll cover in this lesson

1. What is a list?

2. List functions

3. Object types

4. Logical Operations

Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

Logical operations

Logical operations
Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

and

https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

Logical operations
Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

and

Example: Reynold’s number

The relationship between the Reynold’s
number and the turbulence of a flow have
been well established. The Kármán vortex
street is estimated to occur when the Reynold’s
number is between 80 - 200.

Given an unknown Reynold’s number, we can
test if the Kármán vortex street will occur.

Re > 80 and Re < 200

True

The Kármán vortex
street forms!

False

The Kármán vortex
street doesn’t form.

https://www.sciencedirect.com/topics/
engineering/creeping-flow

Logical operations
Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

or

https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

Logical operations
Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

or

Example: Reynold’s number

The relationship between the Reynold’s
number and the turbulence of a flow have
been well established. The Kármán vortex
street is estimated to occur when the Reynold’s
number is between 80 - 200.

Given an unknown Reynold’s number, we can
test if the Kármán vortex street will occur.

Re < 80 or Re > 200

False

The Kármán vortex
street forms!

True

The Kármán vortex
street doesn’t form.

https://www.sciencedirect.com/topics/
engineering/creeping-flow

Logical operations
Using the comparison operators (lesson #2) we can add more
parameters to our comparisons using logical operators…Operation

 == Equal

!= Not Equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators

not

https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

not True not False

 False True

is
Test if two variables refer to the same object. This is useful when you assign variables to lists.

If you assign a variable to a list, it “is” that list
(no matter what)

If you assign a variable to a copy of a list, it “is”
not that list

If you assign a variable to an identical, but
separate list, it “is” not that list

Resources

Seawater ions - http://www.marinebio.net/marinescience/02ocean/swcomposition.htm

Logical operator flowcharts - https://www.geeksforgeeks.org/python-logical-operators-with-
examples-improvement-needed/

Kármán vortex street - https://www.sciencedirect.com/topics/engineering/creeping-flow

