
Control flow
For loops, while loops,

list comprehensions, and if statements

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Thursday, October 15, 2020 | Lesson #4

What we’ll cover in this lesson

1. For loops

2. Advanced for loops

3. While loops and list comprehensions

4. If statements

Sometimes we want to
do something repetitive:

Why use loops when programming?

Why use loops when programming?

Sometimes we want to
do something repetitive:

Why use loops when programming?

Sometimes we want to
do something repetitive: Oops.

Why use loops when programming?

Sometimes we want to
do something repetitive:There’s a more efficient way.

Loops allow you to repeat an
action, efficiently.

Elements of the Python for loop

for <VARIABLE> in <ITERABLE>:
<ACTION>
<ACTION>
etc.

Elements of the Python for loop

for <VARIABLE> in <ITERABLE>:
<ACTION>
<ACTION>
etc.

Indent using a tab or
2 spaces (on Google Colab)

Actions that you want to
repeat can be any line of code,
such as print statements,

variable assignments, or calculations

In Python, iterables are collections of objectsYou should give this variable a unique name

The colon is essential!

Iterables that you can use in for loops

list

tuple

string

range()

enumerate()

zip()

and others…

[4,3,2,1]

('pH','puget_sound',7.8)

'hello'

range(0,7,2)

stay tuned…

stay tuned…

Iterables that you can use in for loops

list

tuple

string

range()

enumerate()

zip()

and others…

a.k.a. [0,2,4,6]

[4,3,2,1]

('pH','puget_sound',7.8)

'hello'

range(0,7,2)

stay tuned…

stay tuned…

Iterables that you can use in for loops

list

tuple

string

range()

enumerate()

zip()

and others…

countdown

pH_data

hello_string

even_numbers

stay tuned…

stay tuned…

Variable names are okay to use in loops, too:

Examples of for loops
Option 1: Option 2:

Examples of for loops

Option 1: Option 2:

Examples of for loops

Option 1: Option 2:

Examples of for loops

Option 1: Option 2:

Using a for loop to calculate a sum of numbers

Option 1:

Using a for loop to calculate a sum of numbers

Assignment operator:

a += b

a = a + b
is equivalent to:

Option 2:

Using a for loop to calculate a sum of numbers

range(4) a.k.a. [0,1,2,3]

Option 3:

What we’ll cover in this lesson

1. For loops

2. Advanced for loops

3. While loops and list comprehensions

4. If statements

Nested for loops

Mix seawater from 3 locations.
What is the average temperature, salinity, and oxygen?

Nested for loops

Outer for loop

Inner for loop

Indent!

Nested for loops

Cycle
Outer loop’s

param_idx
Inner loop’s

current_idx
currents_mix[param_idx][current_idx]

#1 0 0 4.4

#2 0 1 4.8

#3 0 2 4.5

#4 1 0 34.5

#5 1 1 33.9

#6 1 2 33.8

#7 2 0 230

#8 2 1 250

#9 2 2 260

Temperature

Salinity

Oxygen

Nested for loops

Cycle
Outer loop’s

param_idx
Inner loop’s

current_idx
currents_mix[param_idx][current_idx]

#1 0 0 4.4

#2 0 1 4.8

#3 0 2 4.5

#4 1 0 34.5

#5 1 1 33.9

#6 1 2 33.8

#7 2 0 230

#8 2 1 250

#9 2 2 260

Temperature

Salinity

Oxygen

Looping using the zip() function

zip() joins multiple iterators (e.g. lists) and returns an iterable of tuples.
Those tuples get unpacked when looping over the zip object.

(1,'A')

2
3

4

'B'
'C'
'D'

Looping using the zip() function

zip() joins multiple iterators (e.g. lists) and returns an iterable of tuples.
Those tuples get unpacked when looping over the zip object.

Looping using the enumerate() function

enumerate() takes an iterable (e.g. a list) as an argument and returns
an iterable of tuple pairs of (index,value). Index starts counting from 0.

'A'

'B'

'C'

'D'

'E'

0,

1,

2,

3,

4,

()

()

()

()

()

Looping using the enumerate() function

enumerate() takes an iterable (e.g. a list) as an argument and returns
an iterable of tuple pairs of (index,value). Index starts counting from 0.

What we’ll cover in this lesson

1. For loops

2. Advanced for loops

3. While loops and list comprehensions

4. If statements

Elements of the Python while loop

while <BOOLEAN CONDITION>:
<ACTION>
<ACTION>
etc.

Control flow of the while loop

EXIT LOOP

START

<CONDITION>
check

True

do <ACTION>

False

 while <CONDITION>:

<ACTION>

<ACTION>

etc.

The infinite loop

while True:
 <ACTION>

A useful while loop

Print all of the powers of 2 (20, 21, 22, 23, etc.) that are less than 1000:

An alternative to loops: list comprehensions

Create a list containing the first ten perfect squares (02, 12, 22, 32, 42, etc.):

Option 1
(for loop):

Option 2
(list comprehension):

An alternative to loops: list comprehensions

This looks like a for loop!Calculation

Create a list containing the first ten perfect squares (02, 12, 22, 32, 42, etc.):

What we’ll cover in this lesson

1. For loops

2. Advanced for loops

3. While loops and list comprehensions

4. If statements

Elements of the Python if statement

if <CONDITION>:
<ACTION>
<ACTION>
etc.

Review of Boolean operators

Comparison ==, !=, >, >=, <, <=

Logical and, or, not

Membership in, not in

Identity is, is not

Examples of if statements

Examples of if statements

if/elif statements

if <CONDITION #1>:
<ACTION #1>

elif <CONDITION #2>:
<ACTION #2>

Note:
elif stands

for “else if”

if/elif statements

if <CONDITION #1>:
<ACTION #1>

elif <CONDITION #2>:
<ACTION #2>

elif <CONDITION #3>:
<ACTION #3>

if/elif/else statements

if <CONDITION #1>:

 <ACTION #1>

elif <CONDITION #2>:

 <ACTION #2>

elif <CONDITION #3>:

 <ACTION #3>

else:

 <ACTION #4>

if/elif/else statements

if/elif/else statements

if/elif/else statements

