
NumPy
Arrays and functions

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Tuesday, October 20, 2020 | Lesson #5

What we’ll cover in this lesson

1. Functions and arguments

2. NumPy arrays – arithmetic, logical operations, indexing

3. NumPy functions and constants

Functions and arguments

len([6,8,7,5])

Function name An “argument” or “parameter”

The function “returns” or “evaluates to” the integer 4

Some functions act on a target

'python'.upper()

The “target” of the function Function name

The function returns 'PYTHON'

Values returned by functions can be stored in a variable

'python'.upper()

new_string = 'python'.upper()

The “target” of the function Function name

Some functions don’t return anything

numbers.sort()

This function returns nothing at all!
It simply modifies numbers “in-place,” which becomes [5,6,7,8].

numbers = [6,8,7,5]

Some functions have named arguments

numbers.sort(reverse=True)

Now, numbers will be sorted in reverse order: [8,7,6,5].

“Named” or “keyword” argument Argument value

Named arguments always have a default value

numbers.sort(reverse=False)

The “default” value of reverse

numbers.sort()

is equivalent to:

Functions can have both positional and named arguments

function_name(arg1,arg2,arg3,…,named_arg1=default1,
 named_arg2=default2,…)

“Positional” arguments have a fixed order

“Named” arguments can be provided in any order,
but they must follow any positional arguments

What we’ll cover in this lesson

1. Functions and arguments

2. NumPy arrays – arithmetic, logical operations, indexing

3. NumPy functions and constants

Loading NumPy (“Numeric Python”)

import numpy as np

Makes this package available to Python

Package names are
usually all lowercase

This is a shortcut;
you can choose any name
but np is most common

This part is
technically optional

Checking a package’s version

That’s a double
underscore: _ _

The NumPy array (ndarray)

“N-dimensional array” (e.g. 1-D, 2-D, 3-D, 4-D, etc.)

np.array([5,6,7,8])

Similarities between lists and NumPy 1-D arrays
Both are mutable (they can be changed)

Both are compatible with indexing and slicing

Both are iterable Find length using len()

Check membership using in and not in

Differences between lists and NumPy 1-D arrays
Lists NumPy 1-D arrays

• Lists can contain a mix of object types
(integers, strings, sub-lists, etc.)

• Arrays can contain only a single object
type (check using .dtype, change
using .astype())

• Lists are computationally inefficient
(avoid using to store large data sets)

• Arrays are fast for computation and
small in memory (great for big data)

Lists NumPy 1-D arrays

• Lists don’t preserve scientific notation in
floating-point numbers

• Arrays preserve scientific notation

• Use Python’s in-place append() or
extend(), insert(), del,
reverse(), remove(), pop()

• NumPy’s append(), insert(),
delete(), flip() functions are
not in-place; note the different syntax;
no functions to remove, pop

Differences between lists and NumPy 1-D arrays

Lists NumPy 1-D arrays

• Convert from list → array using: • Convert from array → list using:

• Adding lists concatenates (joins) them: • Adding arrays actually adds them!*

* Note that NumPy also has a concatenate() function.

Differences between lists and NumPy 1-D arrays

Arithmetic operations with arrays

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponential

% Remainder

// Floor

Arithmetic operators Element-wise arithmetic between two or more arrays

Element-wise arithmetic with an array and a number

Element-wise operations require arrays to be the same dimensions

Logical operations with arrays

== Equal

!= Not equal

> Greater than

>= Greater than or
equal to

< Less than

<= Less than or
equal to

Comparison operators Element-wise comparisons between
two arrays or an array and a number

Instead of comparing Boolean arrays with and/or,
use np.logical_and() and np.logical_or()

New indexing options with arrays

Python prints:

Traditional list-style single index

Multiple indices retrieves multiple elements

Logical conditions also work…

… because they evaluate to Boolean arrays

np.where() gives the indices at which
 a Boolean condition is satisfied…

… but you have to index into the result using [0]

When you want to access certain value(s) in an array:

When you want the indices of certain values in an array:

What we’ll cover in this lesson

1. Functions and arguments

2. NumPy arrays – arithmetic, logical operations, indexing

3. NumPy functions and constants

Most functions acting on NumPy arrays can be called two ways

x.sum()

np.sum(x)

x = np.array([10,11,12,13])

Evaluates to: 46

Evaluates to: 46

NumPy functions can also be applied to lists

x.sum()

np.sum(x)

x = [10,11,12,13]

Evaluates to: 46

Evaluates to: 46

Mathematical reductions (array → number)

46

Evaluates to:

x = np.array([10,11,12,13])

np.sum(x) Sum

Purpose:Function:

11.5np.median(x) Median

13np.max(x) Maximum value

10np.min(x) Minimum value

1.11803…np.std(x) Standard deviation

11.5np.mean(x) Mean (average)

Mathematical constants (each return a float)

3.14159…

Evaluates to:

np.pi π (pi)

Purpose:Constant value:

2.71828…np.e e (Euler’s number)

infnp.inf Positive infinity

nannp.nan “Not a Number”

Note:
(used as a placeholder for missing data)

Element-wise functions (number → number, or array → array)

[2,1]

Evaluates to arrays:

np.absolute([-2,-1]) Absolute value

Purpose:Function:

[5.2,5.3]np.round([5.23,5.29],1) Round to a certain
decimal place

[2.,3.,4.]np.sqrt([4,9,16]) Square root
(same as **0.5)

[1.,2.718…,7.389…]np.exp([0,1,2]) Exponential
(same as np.e**)

[0.,1.]np.sin([0,np.pi/2]) Sine (from radians)

[-1.,1.]np.cos([np.pi,2*np.pi]) Cosine

Functions to create new arrays

[0.,0.,0.,0.]

Evaluates to arrays:

np.zeros(4) Array of given length
filled with zeros

Purpose:Function:

[1.,1.,1.,1.]np.ones(4) Array of given length
filled with ones

[2,2,2,2]np.full(4,2) Array of given length
filled with given value

[0,1,2,3]np.arange(4) Same as range()…

[0.,0.25,0.5,0.75]np.arange(0,1,0.25) …except floats and fractional
increments are allowed

[0.,0.25,0.5,0.75,1.]np.linspace(0,1,5) Returns the given number of
evenly spaced values from
start to end (both are inclusive)

