
Loading files (Colab, Google Drive), loading data
(readlines, numpy), and an intro to plotting (matplotlib)

OCEAN 215 | Autumn 2020
Ethan Campbell and Katy Christensen

Watch by Tuesday, October 27, 2020 | Lesson #7

What we’ll cover in this lesson

1. Loading and saving files to Google Colab

2. Loading data using readlines and numpy

3. Intro to plotting

What we’ll cover in this lesson

1. Loading and saving files to Google Colab

2. Loading data using readlines and numpy

3. Intro to plotting

Real data

np.array([[1,2,3,4],[5,6,7,8]])
We could keep creating simple arrays…

But looking at real data is usually more interesting!
(and kind of the point of data science)

Using real data means having data files

Assignment #2, Q4 - data numpy array

Using real data means having data files

Instead of having the data hard-coded into your notebooks, we will now
learn how to read data files

Assignment #2, Q4 - data numpy array

Using real data means having data files

Most common data file types

.nc (NetCDF)

.csv (comma separated values)

.txt (ASCII text)

.jpg (JPEG)

.avi (audio-visual interleave).xlsx (Microsoft Excel)

.json (JavaScript object notation)

Covered in this class Not covered in this class (probably)

Using data files in Colab notebooks

Google Colab runs on the Cloud so files that are stored on your computer
(locally) are not accessible. There are options for loading data files:

1) Upload local files to a runtime 2) Mount your Google Drive

Pros:
- Can keep your files offline/doesn’t take space on Google

drive
- Is good for a fast look at a file to see what is in it

Cons:
- Removes access files after your runtime is over (sometimes)
- Manually uploading files every time you re-open the

notebook can take a lot of time

Pros:
- Your data files are accessible from any machine, every

time you open the notebook because the are on Drive
- Is good for sharing data and code with others

Cons:
- Have to upload files to Cloud and navigate Google Drive

file structure
- Requires internet to even look at the data

Uploading local files every runtime
User Interface (UI) In coding cells

Uploading local files every runtime

This is the sidebar menu
for managing files

User Interface (UI) In coding cells

Uploading local files every runtime

Click here and select the file
(or files, using ctrl/⌘ + click)

This is the sidebar menu
for managing files

User Interface (UI) In coding cells

Uploading local files every runtime

Click here and select the file
(or files, using ctrl/⌘ + click)

This is the sidebar menu
for managing files

User Interface (UI) In coding cells

Click here and select the files
(or files, using ctrl/⌘ + click)

Uploading local files every runtime

Click here and select the file
(or files, using ctrl/⌘ + click)

This is the sidebar menu
for managing files

Click here and select the files
(or files, using ctrl/⌘ + click)

The output of this is a Python
dictionary, with each file name as
a key and the file contents as its
corresponding value.

Both of these options require you to manually select the files!

User Interface (UI) In coding cells

Optional

Using Google Drive - uploading your files

I recommend creating a folder to put
your data files into.

Right click to get this menu

Click here and select the file
(or files, using ctrl/⌘ + click)

drive.google.com

Mount your Google Drive to Colab (User Interface - UI)

This is the sidebar menu
for managing files

Mount your Google Drive to Colab (User Interface - UI)

Click here for a
pop-up to open

This is the sidebar menu
for managing files

Mount your Google Drive to Colab (User Interface - UI)

Click here for a
pop-up to open

This is the sidebar menu
for managing files

This method only works
if you are the only
editor on a notebook,
but doing it this way
means you don’t have
to re-mount Google
Drive every runtime

Mount your Google Drive to Colab (code)

…

Mount your Google Drive to Colab (code)
Click the link that

appears after running
the cell, a new tab will

open

Mount your Google Drive to Colab (code)

Clicking Allow brings you to a new page with
an authorization code.

Copy and past it into the notebook.

Click the link that
appears after running
the cell, a new tab will

open

Mount your Google Drive to Colab (code)

Clicking Allow brings you to a new page with
an authorization code.

Copy and past it into the notebook.

Un-mounting the Google Drive once you have
loaded your data is preferred.

Lo
ad

 th
e

da
ta

 fr
om

 th
e

fil
es

 in
to

 P
yt

ho
n

he
re

!

Click the link that
appears after running
the cell, a new tab will

open

A note about file paths

After mounting your drive or uploading your files, they
should appear in your sidebar for Files

This is my Google Drive

This is an uploaded file

When you want to access those files (to
load their data), you will use its path

Path for uploaded files:
a string containing the file name

Path in Google Drive:
a string containing the file name, preceded by

its folders and separated by /

These are the folders
where you put your data
file in your Google Drive

What we’ll cover in this lesson

1. Loading and saving files to Google Colab

2. Loading data using readlines and numpy

3. Intro to plotting

Sample data - Seattle tidal record
Data source: https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/
LDT&clock=24hour&datum=MTL&interval=6&action=data

Sample data - Seattle tidal record
Data source: https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/
LDT&clock=24hour&datum=MTL&interval=6&action=data

Sample data - Seattle tidal record

Upload the resulting .txt file to your Google Drive data folder… Or upload directly to Google Colab.

UI

Code

Then mount your Google Drive.

UI Code

Data source: https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/
LDT&clock=24hour&datum=MTL&interval=6&action=data

Sample data - Seattle tidal record

Upload the resulting .txt file to your Google Drive data folder… Or upload directly to Google Colab.

UI

Code

Then mount your Google Drive.

UI Code

Data source: https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/
LDT&clock=24hour&datum=MTL&interval=6&action=data

Getting to know your data
Our data file can tell us a little…

But not what the inside looks like. Look inside by:

1) Opening the file using a text editor 2) Opening the file using Python

MS Word is NOT a text editor!

Using open does not read the file. Instead, it creates a file object that can be
read later. Think of it like opening a book…

readlines()

This function loads the entire file into memory and will return a list
object containing each of the lines in your file as items.

To read the file after opening, use the function readlines()

readlines()

To read the file after opening, use the function readlines()

When you are done
reading the file, you have
to close it.

When you print the list, it is not very easy to look at.
The len() function gives you the total number of lines.

readlines()

To read the file after opening, use the function readlines()

The len() function gives you the total number of lines.
When you print the list, it is not very easy to look at. Plus, loading
files that are large can cause your code to slow down.

readline()
Instead of reading the whole file at once with readlines(), read
each line as you go using readline() and a for loop.

The readline() function reads the next
line in the file every time that it is run, so
looping 30 times will print the first 30
lines.

readline()
Header Data Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

Extracting the data

Now that we know what the file structure is, we can load the
data using the numpy function, np.genfromtxt()

This function takes a file and puts its data elements into a
numpy array. We have to carefully consider the file structure
to properly load the data.

We start building our arguments for
loading our data.

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

data = np.genfromtxt(…)

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

filepath

data = np.genfromtxt(…)

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

filepath
skip_header = 14

data = np.genfromtxt(…)

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

filepath
skip_header = 14

usecols = 3
dtype = float

data = np.genfromtxt(…)

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

filepath
skip_header = 14

usecols = 3
dtype = float

(delimiter = None)

data = np.genfromtxt(…)

np.genfromtxt()

Here is what we know about our file now:

1) Our file path on the Google Drive

2) There are 14 lines of header information

• Station, state, units, interval/frequency

3) Columns 0, 1, 2 are date information

4) Column 3 has floats

5) The columns are separated by white space

filepath
skip_header = 14
usecols = (0,1,2)

dtype = str
(delimiter = None)

data_time = np.genfromtxt(…)

np.genfromtxt()

We have successfully loaded data!

Formatting function arguments

https://numpy.org/doc/
stable/reference/generated/

numpy.genfromtxt.html

From the official numpy
documentation online

https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html

What we’ll cover in this lesson

1. Loading and saving files to Google Colab

2. Loading data using readlines and numpy

3. Intro to plotting

Importing matplotlib

import matplotlib.pyplot as plt
This part is

technically optional

This is a shortcut;
you can choose any name
but plt is most common

Matplotlib objects

Main matplotlib objects:

1) Figure: this is outer container for plotting

2) Axes: this is an individual graph

3) Axis (and smaller…): these are the small

formatting to refine your plot

https://realpython.com/python-matplotlib-guide/

Creating figures

Creating a figure with a blank axes object:

These become the variable
names for the figure and axes

objects, respectively.

Creating a figure with a blank axes object of custom size:

(width, height) in inches

Creating figures

Creating a figure with multiple axes objects:

This is so that each axes has
a variable name ax0

ax1

Creating figures

Simple line plot
Our data:

Start by creating a figure with an empty axes object:

Simple line plot
Our data:

Plot our data on the axis object:

These are optional
arguments, but they make
the figure more appealing.

(c=color)

x-axis, y-axis

Simple line plot
Our data:

Create a title, labels, and figure formatting:

Scatter plot

plt.scatter(x, y, size= , color= , alpha=)

Temperature
Salinity

Constant Pressure Transparency

These are changeable, and
won’t affect where the dots

are on the plot.

Scatter plot
Example data: CTD data from 1993 WOCE

…
4877.0,2, 2.5475,2, 34.9021,2, -999.0,9
END_DATA

Scatter plot
Loading data:

`
Plotting:

Figure requirements for this course

Appropriate
resolution

Appropriate axis limits

1) Title

2) Axis labels (with units, when possible)

3) Appropriate axis limits (e.g. max/min)

4) Appropriate tick resolution

5) Legend for different datasets, when applicable

6) Large enough fontsizes

Everything is customizable when plotting

plot
You can change anything in a plot if you know how.

You can usually find how to do
something by searching the
documentation or searching

the internet.

https://matplotlib.org/3.3.2/index.html

Official matplotlib
documentation:

https://realpython.com/python-matplotlib-guide/

Resources

https://matplotlib.org/3.3.2/
index.html

Official matplotlib
documentation:

https://numpy.org/doc/stable/
reference/generated/

numpy.genfromtxt.html

Official numpy
documentation:

https://tidesandcurrents.noaa.gov/
noaatidepredictions.html?
id=9447130&units=metric&bdate
=20201001&edate=20201024&ti
mezone=LST/
LDT&clock=24hour&datum=MTL
&interval=6&action=data

Tidal data:

https://
colab.research.google.com

/notebooks/io.ipynb

Loading data in Google
Colab:

https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9447130&units=metric&bdate=20201001&edate=20201024&timezone=LST/LDT&clock=24hour&datum=MTL&interval=6&action=data

